Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Neurol Clin Pract ; 12(4): e66-e74, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2089290

ABSTRACT

Background and Objectives: There have been numerous reports of neurologic manifestations identified in hospitalized patients infected with SARS-CoV-2, the virus that causes COVID-19. Here, we identify the spectrum of associated neurologic symptoms and diagnoses, define the time course of their development, and examine readmission rates and mortality risk posthospitalization in a multiethnic urban cohort. Methods: We identify the occurrence of new neurologic diagnoses among patients with laboratory-confirmed SARS-CoV-2 infection in New York City. A retrospective cohort study was performed on 532 cases (hospitalized patients with new neurologic diagnoses within 6 weeks of positive SARS-CoV-2 laboratory results between March 1, 2020, and August 31, 2020). We compare demographic and clinical features of the 532 cases with 532 controls (hospitalized COVID-19 patients without neurologic diagnoses) in a case-control study with one-to-one matching and examine hospital-related data and outcomes of death and readmission up to 6 months after acute hospitalization in a secondary case-only analysis. Results: Among the 532 cases, the most common new neurologic diagnoses included encephalopathy (478, 89.8%), stroke (66, 12.4%), and seizures (38, 7.1%). In the case-control study, cases were more likely than controls to be male (58.6% vs 52.8%, p = 0.05), had baseline neurologic comorbidities (36.3% vs 13.0%, p < 0.0001), and were to be treated in an intensive care unit (62.0% vs 9.6%, p < 0.0001). Of the 394 (74.1%) cases who survived acute hospitalization, more than half (220 of 394, 55.8%) were readmitted within 6 months, with a mortality rate of 23.2% during readmission. Discussion: Hospitalized patients with SARS-CoV-2 and new neurologic diagnoses have significant morbidity and mortality postdischarge. Further research is needed to define the effect of neurologic diagnoses during acute hospitalization on longitudinal post-COVID-19-related symptoms including neurocognitive impairment.

2.
Ann Neurol ; 91(6): 740-755, 2022 06.
Article in English | MEDLINE | ID: covidwho-1729093

ABSTRACT

OBJECTIVE: The purpose of this study was to estimate the time to recovery of command-following and associations between hypoxemia with time to recovery of command-following. METHODS: In this multicenter, retrospective, cohort study during the initial surge of the United States' pandemic (March-July 2020) we estimate the time from intubation to recovery of command-following, using Kaplan Meier cumulative-incidence curves and Cox proportional hazard models. Patients were included if they were admitted to 1 of 3 hospitals because of severe coronavirus disease 2019 (COVID-19), required endotracheal intubation for at least 7 days, and experienced impairment of consciousness (Glasgow Coma Scale motor score <6). RESULTS: Five hundred seventy-one patients of the 795 patients recovered command-following. The median time to recovery of command-following was 30 days (95% confidence interval [CI] = 27-32 days). Median time to recovery of command-following increased by 16 days for patients with at least one episode of an arterial partial pressure of oxygen (PaO2 ) value ≤55 mmHg (p < 0.001), and 25% recovered ≥10 days after cessation of mechanical ventilation. The time to recovery of command-following  was associated with hypoxemia (PaO2 ≤55 mmHg hazard ratio [HR] = 0.56, 95% CI = 0.46-0.68; PaO2 ≤70 HR = 0.88, 95% CI = 0.85-0.91), and each additional day of hypoxemia decreased the likelihood of recovery, accounting for confounders including sedation. These findings were confirmed among patients without any imagining evidence of structural brain injury (n = 199), and in a non-overlapping second surge cohort (N = 427, October 2020 to April 2021). INTERPRETATION: Survivors of severe COVID-19 commonly recover consciousness weeks after cessation of mechanical ventilation. Long recovery periods are associated with more severe hypoxemia. This relationship is not explained by sedation or brain injury identified on clinical imaging and should inform decisions about life-sustaining therapies. ANN NEUROL 2022;91:740-755.


Subject(s)
Brain Injuries , COVID-19 , Brain Injuries/complications , COVID-19/complications , Cohort Studies , Humans , Hypoxia , Retrospective Studies , Unconsciousness/complications
3.
Front Med (Lausanne) ; 8: 770343, 2021.
Article in English | MEDLINE | ID: covidwho-1551517

ABSTRACT

Background: Characterization of coronavirus disease 2019 (COVID-19) endotypes may help explain variable clinical presentations and response to treatments. While risk factors for COVID-19 have been described, COVID-19 endotypes have not been elucidated. Objectives: We sought to identify and describe COVID-19 endotypes of hospitalized patients. Methods: Consensus clustering (using the ensemble method) of patient age and laboratory values during admission identified endotypes. We analyzed data from 528 patients with COVID-19 who were admitted to telemetry capable beds at Columbia University Irving Medical Center and discharged between March 12 to July 15, 2020. Results: Four unique endotypes were identified and described by laboratory values, demographics, outcomes, and treatments. Endotypes 1 and 2 were comprised of low numbers of intubated patients (1 and 6%) and exhibited low mortality (1 and 6%), whereas endotypes 3 and 4 included high numbers of intubated patients (72 and 85%) with elevated mortality (21 and 43%). Endotypes 2 and 4 had the most comorbidities. Endotype 1 patients had low levels of inflammatory markers (ferritin, IL-6, CRP, LDH), low infectious markers (WBC, procalcitonin), and low degree of coagulopathy (PTT, PT), while endotype 4 had higher levels of those markers. Conclusions: Four unique endotypes of hospitalized patients with COVID-19 were identified, which segregated patients based on inflammatory markers, infectious markers, evidence of end-organ dysfunction, comorbidities, and outcomes. High comorbidities did not associate with poor outcome endotypes. Further work is needed to validate these endotypes in other cohorts and to study endotype differences to treatment responses.

4.
Neurocrit Care ; 36(1): 89-96, 2022 02.
Article in English | MEDLINE | ID: covidwho-1286190

ABSTRACT

BACKGROUND: Prevalence and etiology of unconsciousness are uncertain in hospitalized patients with coronavirus disease 2019 (COVID-19). We tested the hypothesis that increased inflammation in COVID-19 precedes coma, independent of medications, hypotension, and hypoxia. METHODS: We retrospectively assessed 3203 hospitalized patients with COVID-19 from March 2 through July 30, 2020, in New York City with the Glasgow Coma Scale and systemic inflammatory response syndrome (SIRS) scores. We applied hazard ratio (HR) modeling and mediation analysis to determine the risk of SIRS score elevation to precede coma, accounting for confounders. RESULTS: We obtained behavioral assessments in 3203 of 10,797 patients admitted to the hospital who tested positive for SARS-CoV-2. Of those patients, 1054 (32.9%) were comatose, which first developed on median hospital day 2 (interquartile range [IQR] 1-9). During their hospital stay, 1538 (48%) had a SIRS score of 2 or above at least once, and the median maximum SIRS score was 2 (IQR 1-2). A fivefold increased risk of coma (HR 5.05, 95% confidence interval 4.27-5.98) was seen for each day that patients with COVID-19 had elevated SIRS scores, independent of medication effects, hypotension, and hypoxia. The overall mortality in this population was 13.8% (n = 441). Coma was associated with death (odds ratio 7.77, 95% confidence interval 6.29-9.65) and increased length of stay (13 days [IQR 11.9-14.1] vs. 11 [IQR 9.6-12.4]), accounting for demographics. CONCLUSIONS: Disorders of consciousness are common in hospitalized patients with severe COVID-19 and are associated with increased mortality and length of hospitalization. The underlying etiology of disorders of consciousness in this population is uncertain but, in addition to medication effects, may in part be linked to systemic inflammation.


Subject(s)
COVID-19 , Consciousness , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/epidemiology
5.
J Neurol Sci ; 427: 117532, 2021 08 15.
Article in English | MEDLINE | ID: covidwho-1253235

ABSTRACT

BACKGROUND: Vaccine induced immune mediated thrombocytopenia or VITT, is a recent and rare phenomenon of thrombosis with thrombocytopenia, frequently including cerebral venous thromboses (CVT), that has been described following vaccination with adenovirus vaccines ChAdOx1 nCOV-19 (AstraZeneca) and Ad26.COV2·S Johnson and Johnson (Janssen/J&J). The evaluation and management of suspected cases of CVT post COVID-19 vaccination are critical skills for a broad range of healthcare providers. METHODS: A collaborative comprehensive review of literature was conducted among a global group of expert neurologists and hematologists. FINDINGS: Strategies for rapid evaluation and treatment of the CVT in the context of possible VITT exist, including inflammatory marker measurements, PF4 assays, and non-heparin anticoagulation.


Subject(s)
COVID-19 , Venous Thrombosis , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Vaccination/adverse effects , Venous Thrombosis/therapy
6.
Brain ; 144(9): 2696-2708, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1185655

ABSTRACT

Many patients with SARS-CoV-2 infection develop neurological signs and symptoms; although, to date, little evidence exists that primary infection of the brain is a significant contributing factor. We present the clinical, neuropathological and molecular findings of 41 consecutive patients with SARS-CoV-2 infections who died and underwent autopsy in our medical centre. The mean age was 74 years (38-97 years), 27 patients (66%) were male and 34 (83%) were of Hispanic/Latinx ethnicity. Twenty-four patients (59%) were admitted to the intensive care unit. Hospital-associated complications were common, including eight patients (20%) with deep vein thrombosis/pulmonary embolism, seven (17%) with acute kidney injury requiring dialysis and 10 (24%) with positive blood cultures during admission. Eight (20%) patients died within 24 h of hospital admission, while 11 (27%) died more than 4 weeks after hospital admission. Neuropathological examination of 20-30 areas from each brain revealed hypoxic/ischaemic changes in all brains, both global and focal; large and small infarcts, many of which appeared haemorrhagic; and microglial activation with microglial nodules accompanied by neuronophagia, most prominently in the brainstem. We observed sparse T lymphocyte accumulation in either perivascular regions or in the brain parenchyma. Many brains contained atherosclerosis of large arteries and arteriolosclerosis, although none showed evidence of vasculitis. Eighteen patients (44%) exhibited pathologies of neurodegenerative diseases, which was not unexpected given the age range of our patients. We examined multiple fresh frozen and fixed tissues from 28 brains for the presence of viral RNA and protein, using quantitative reverse-transcriptase PCR, RNAscope® and immunocytochemistry with primers, probes and antibodies directed against the spike and nucleocapsid regions. The PCR analysis revealed low to very low, but detectable, viral RNA levels in the majority of brains, although they were far lower than those in the nasal epithelia. RNAscope® and immunocytochemistry failed to detect viral RNA or protein in brains. Our findings indicate that the levels of detectable virus in coronavirus disease 2019 brains are very low and do not correlate with the histopathological alterations. These findings suggest that microglial activation, microglial nodules and neuronophagia, observed in the majority of brains, do not result from direct viral infection of brain parenchyma, but more likely from systemic inflammation, perhaps with synergistic contribution from hypoxia/ischaemia. Further studies are needed to define whether these pathologies, if present in patients who survive coronavirus disease 2019, might contribute to chronic neurological problems.


Subject(s)
Brain Infarction/pathology , Brain/pathology , COVID-19/pathology , Hypoxia-Ischemia, Brain/pathology , Intracranial Hemorrhages/pathology , Acute Kidney Injury/complications , Acute Kidney Injury/physiopathology , Acute Kidney Injury/therapy , Adult , Aged , Aged, 80 and over , Bacteremia/complications , Brain/metabolism , Brain Infarction/complications , COVID-19/complications , COVID-19/physiopathology , Coronavirus Nucleocapsid Proteins/metabolism , Female , Humans , Hypoxia-Ischemia, Brain/complications , Inflammation , Intensive Care Units , Intracranial Hemorrhages/complications , Male , Microglia/pathology , Middle Aged , Neurons/pathology , Phagocytosis , Phosphoproteins/metabolism , Pulmonary Embolism/complications , Pulmonary Embolism/physiopathology , RNA, Viral/metabolism , Renal Dialysis , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Survival Rate , T-Lymphocytes/pathology , Venous Thrombosis/complications , Venous Thrombosis/physiopathology
7.
J Trauma Acute Care Surg ; 90(1): e7-e12, 2021 01 01.
Article in English | MEDLINE | ID: covidwho-1117212

ABSTRACT

BACKGROUND: Critically ill coronavirus disease 2019 (COVID-19) patients have frequent thrombotic complications and laboratory evidence of hypercoagulability. The relationship of coagulation tests and thrombosis requires investigation to identify best diagnostic and treatment approaches. We assessed for hypercoagulable characteristics in critically ill COVID-19 patients using rotational thromboelastometry (ROTEM) and explored relationships of D-dimer and ROTEM measurements with thrombotic complications. METHODS: Critically ill adult COVID-19 patients receiving ROTEM testing between March and April 2020 were analyzed. Patients receiving therapeutic anticoagulation before ROTEM were excluded. Rotational thromboelastometry measurements from COVID-19 patients were compared with non-COVID-19 patients matched by age, sex, and body mass index. Intergroup differences in ROTEM measurements were assessed using t tests. Correlations of D-dimer levels to ROTEM measurements were assessed in COVID-19 patients who had available concurrent testing. Intergroup differences of D-dimer and ROTEM measurements were explored in COVID-19 patients with and without thrombosis. RESULTS: Of 30 COVID-19 patients receiving ROTEM, we identified hypercoagulability from elevated fibrinogen compared with non-COVID-19 patients (fibrinogen assay maximum clot firmness [MCF], 47 ± 13 mm vs. 20 ± 7 mm; mean intergroup difference, 27.4 mm; 95% confidence interval [CI], 22.1-32.7 mm; p < 0.0001). In our COVID-19 cohort, thrombotic complications were identified in 33%. In COVID-19 patients developing thrombotic complications, we identified higher D-dimer levels (17.5 ± 4.3 µg/mL vs. 8.0 ± 6.3 µg/mL; mean difference, 9.5 µg/mL; 95% CI, 13.9-5.1; p < 0.0001) but lower fibrinogen assay MCF (39.7 ± 10.8 mm vs. 50.1 ± 12.0 mm; mean difference, -11.2 mm; 95% CI, -2.1 to -20.2; p = 0.02) compared with patients without thrombosis. We identified negative correlations of D-dimer levels and ROTEM MCF in these patients (r = -0.61; p = 0.001). CONCLUSION: We identified elevated D-dimer levels and hypercoagulable blood clot characteristics from increased fibrinogen on ROTEM testing in critically ill COVID-19 patients. However, we identified lower, albeit still hypercoagulable, ROTEM measurements of fibrinogen in COVID-19 patients with thrombotic complications compared with those without. Further work is required to externally validate these findings and to investigate the mechanistic drivers for these relationships to identify best diagnostic and treatment approaches for these patients. LEVEL OF EVIDENCE: Epidemiologic, level IV.


Subject(s)
COVID-19/physiopathology , Fibrin Fibrinogen Degradation Products/analysis , Thrombelastography/methods , Thrombophilia/blood , Thrombosis/etiology , Aged , COVID-19/blood , Case-Control Studies , Critical Illness , Female , Hemostasis , Humans , Male , Middle Aged , New York City , Partial Thromboplastin Time , SARS-CoV-2/isolation & purification , Thrombosis/diagnosis
8.
Front Neurol ; 12: 614719, 2021.
Article in English | MEDLINE | ID: covidwho-1094185

ABSTRACT

Critical illness and sepsis are commonly associated with subclinical seizures. COVID-19 frequently causes severe critical illness, but the incidence of electrographic seizures in patients with COVID-19 has been reported to be low. This retrospective case series assessed the incidence of and risks for electrographic seizures in patients hospitalized with COVID-19 who underwent continuous video electroencephalography monitoring (cvEEG) between March 1st, 2020 and June 30th, 2020. One hundred and twenty-two patients were initially identified who resulted SARS-CoV-2 nasopharyngeal RT-PCR swab positivity with any electroencephalography order placed in the EMR. Seventy-nine patients met study inclusion criteria: age ≥18 years, >1 h of cvEEG monitoring, and positive SARS-CoV-2 nasopharyngeal swab PCR. Six (8%) of the 79 patients suffered electrographic seizures (ES), three of whom suffered non-convulsive status epilepticus. Acute hyperkinetic movements were the most common reason for cvEEG in patients with ES (84%). None of the patients undergoing cvEEG for persistent coma (29% of all patients) had ES. Focal slowing (67 vs. 10%), sporadic interictal epileptiform discharges (EDs; 33 vs. 6%), and periodic/rhythmic EDs (67 vs. 1%) were proportionally more frequent among patients with electrographic seizures than those without these seizures. While 15% of patients without ES had generalized periodic discharges (GPDs) with triphasic morphology on EEG, none of the patients with ES had this pattern. Further study is required to assess the predictive values of these risk factors on electrographic seizure incidence and subsequent outcomes.

9.
Clin Neurophysiol ; 132(3): 730-736, 2021 03.
Article in English | MEDLINE | ID: covidwho-1039319

ABSTRACT

OBJECTIVE: To study if limited frontotemporal electroencephalogram (EEG) can guide sedation changes in highly infectious novel coronavirus disease 2019 (COVID-19) patients receiving neuromuscular blocking agent. METHODS: 98 days of continuous frontotemporal EEG from 11 consecutive patients was evaluated daily by an epileptologist to recommend reduction or maintenance of the sedative level. We evaluated the need to increase sedation in the 6 h following this recommendation. Post-hoc analysis of the quantitative EEG was correlated with the level of sedation using a machine learning algorithm. RESULTS: Eleven patients were studied for a total of ninety-eight sedation days. EEG was consistent with excessive sedation on 57 (58%) and adequate sedation on 41 days (42%). Recommendations were followed by the team on 59% (N = 58; 19 to reduce and 39 to keep the sedation level). In the 6 h following reduction in sedation, increases of sedation were needed in 7 (12%). Automatized classification of EEG sedation levels reached 80% (±17%) accuracy. CONCLUSIONS: Visual inspection of a limited EEG helped sedation depth guidance. In a secondary analysis, our data supported that this determination may be automated using quantitative EEG analysis. SIGNIFICANCE: Our results support the use of frontotemporal EEG for guiding sedation in patients with COVID-19.


Subject(s)
COVID-19 Drug Treatment , Electroencephalography/methods , Frontal Lobe/physiology , Hypnotics and Sedatives/administration & dosage , Machine Learning , Temporal Lobe/physiology , Aged , Anesthesia/methods , COVID-19/diagnosis , COVID-19/physiopathology , Cohort Studies , Electroencephalography/drug effects , Female , Humans , Intensive Care Units , Male , Middle Aged
10.
Open Forum Infect Dis ; 7(11): ofaa501, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-940841

ABSTRACT

BACKGROUND: Assessment of the impact of cerebrospinal fluid (CSF) analysis including investigation for the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the optimization of patient care. METHODS: In this case series, we review patients diagnosed with SARS-CoV-2 undergoing lumbar puncture (LP) admitted to Columbia University Irving Medical Center (New York, NY, USA) from March 1 to May 26, 2020. In a subset of patients, CSF SARS-CoV-2 quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) testing is performed. RESULTS: The average age of 27 patients who underwent LP with definitive SARS-CoV-2 (SD) was 37.5 (28.7) years. CSF profiles showed elevated white blood cell counts and protein in 44% and 52% of patients, respectively. LP results impacted treatment decisions in 10 (37%) patients, either by change of antibiotics, influence in disposition decision, or by providing an alternative diagnosis. CSF SARS-CoV-2 qRT-PCR was performed on 8 (30%) patients, with negative results in all samples. CONCLUSIONS: Among patients diagnosed with SARS-CoV-2, CSF results changed treatment decisions or disposition in over one-third of our patient cohort. CSF was frequently abnormal, though CSF SARS-CoV-2 qRT-PCR was negative in all samples. Further studies are required to define whether CSF SARS-CoV-2 testing is warranted in certain clinical contexts.

13.
Gen Hosp Psychiatry ; 66: 1-8, 2020.
Article in English | MEDLINE | ID: covidwho-599549

ABSTRACT

OBJECTIVE: The mental health toll of COVID-19 on healthcare workers (HCW) is not yet fully described. We characterized distress, coping, and preferences for support among NYC HCWs during the COVID-19 pandemic. METHODS: This was a cross-sectional web survey of physicians, advanced practice providers, residents/fellows, and nurses, conducted during a peak of inpatient admissions for COVID-19 in NYC (April 9th-April 24th 2020) at a large medical center in NYC (n = 657). RESULTS: Positive screens for psychological symptoms were common; 57% for acute stress, 48% for depressive, and 33% for anxiety symptoms. For each, a higher percent of nurses/advanced practice providers screened positive vs. attending physicians, though housestaff's rates for acute stress and depression did not differ from either. Sixty-one percent of participants reported increased sense of meaning/purpose since the COVID-19 outbreak. Physical activity/exercise was the most common coping behavior (59%), and access to an individual therapist with online self-guided counseling (33%) garnered the most interest. CONCLUSIONS: NYC HCWs, especially nurses and advanced practice providers, are experiencing COVID-19-related psychological distress. Participants reported using empirically-supported coping behaviors, and endorsed indicators of resilience, but they also reported interest in additional wellness resources. Programs developed to mitigate stress among HCWs during the COVID-19 pandemic should integrate HCW preferences.


Subject(s)
Adaptation, Psychological , Coronavirus Infections/psychology , Health Personnel/psychology , Patient Preference/psychology , Pneumonia, Viral/psychology , Psychological Distress , Stress Disorders, Traumatic, Acute/psychology , Adult , COVID-19 , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Pandemics
14.
Lancet ; 395(10239): 1763-1770, 2020 06 06.
Article in English | MEDLINE | ID: covidwho-306236

ABSTRACT

BACKGROUND: Over 40 000 patients with COVID-19 have been hospitalised in New York City (NY, USA) as of April 28, 2020. Data on the epidemiology, clinical course, and outcomes of critically ill patients with COVID-19 in this setting are needed. METHODS: This prospective observational cohort study took place at two NewYork-Presbyterian hospitals affiliated with Columbia University Irving Medical Center in northern Manhattan. We prospectively identified adult patients (aged ≥18 years) admitted to both hospitals from March 2 to April 1, 2020, who were diagnosed with laboratory-confirmed COVID-19 and were critically ill with acute hypoxaemic respiratory failure, and collected clinical, biomarker, and treatment data. The primary outcome was the rate of in-hospital death. Secondary outcomes included frequency and duration of invasive mechanical ventilation, frequency of vasopressor use and renal replacement therapy, and time to in-hospital clinical deterioration following admission. The relation between clinical risk factors, biomarkers, and in-hospital mortality was modelled using Cox proportional hazards regression. Follow-up time was right-censored on April 28, 2020 so that each patient had at least 28 days of observation. FINDINGS: Between March 2 and April 1, 2020, 1150 adults were admitted to both hospitals with laboratory-confirmed COVID-19, of which 257 (22%) were critically ill. The median age of patients was 62 years (IQR 51-72), 171 (67%) were men. 212 (82%) patients had at least one chronic illness, the most common of which were hypertension (162 [63%]) and diabetes (92 [36%]). 119 (46%) patients had obesity. As of April 28, 2020, 101 (39%) patients had died and 94 (37%) remained hospitalised. 203 (79%) patients received invasive mechanical ventilation for a median of 18 days (IQR 9-28), 170 (66%) of 257 patients received vasopressors and 79 (31%) received renal replacement therapy. The median time to in-hospital deterioration was 3 days (IQR 1-6). In the multivariable Cox model, older age (adjusted hazard ratio [aHR] 1·31 [1·09-1·57] per 10-year increase), chronic cardiac disease (aHR 1·76 [1·08-2·86]), chronic pulmonary disease (aHR 2·94 [1·48-5·84]), higher concentrations of interleukin-6 (aHR 1·11 [95%CI 1·02-1·20] per decile increase), and higher concentrations of D-dimer (aHR 1·10 [1·01-1·19] per decile increase) were independently associated with in-hospital mortality. INTERPRETATION: Critical illness among patients hospitalised with COVID-19 in New York City is common and associated with a high frequency of invasive mechanical ventilation, extrapulmonary organ dysfunction, and substantial in-hospital mortality. FUNDING: National Institute of Allergy and Infectious Diseases and the National Center for Advancing Translational Sciences, National Institutes of Health, and the Columbia University Irving Institute for Clinical and Translational Research.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Adult , Age Factors , Aged , Aged, 80 and over , Betacoronavirus , Biomarkers/blood , COVID-19 , Coronavirus Infections/mortality , Critical Illness/epidemiology , Female , Fibrin Fibrinogen Degradation Products/analysis , Hospital Mortality , Hospitalization , Humans , Interleukin-6/blood , Male , Middle Aged , New York City/epidemiology , Pandemics , Pneumonia, Viral/mortality , Proportional Hazards Models , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/virology , Risk Factors , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL